Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Cell Death Dis ; 15(4): 283, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649362

RESUMO

Acute liver failure (ALF) is a deadly illness due to insufficient detoxification in liver induced by drugs, toxins, and other etiologies, and the effective treatment for ALF is very limited. Among the drug-induced ALF, acetaminophen (APAP) overdose is the most common cause. However, the molecular mechanisms underlying APAP hepatoxicity remain incompletely understood. Sirtuin 6 (Sirt6) is a stress responsive protein deacetylase and plays an important role in regulation of DNA repair, genomic stability, oxidative stress, and inflammation. Here, we report that genetic and pharmacological activation of Sirt6 protects against ALF in mice. We first observed that Sirt6 expression was significantly reduced in the liver tissues of human patients with ALF and mice treated with an overdose of APAP. Then we developed an inducible Sirt6 transgenic mice for Cre-mediated overexpression of the human Sirt6 gene in systemic (Sirt6-Tg) and hepatic-specific (Sirt6-HepTg) manners. Both Sirt6-Tg mice and Sirt6-HepTg mice exhibited the significant protection against APAP hepatoxicity. In contrast, hepatic-specific Sirt6 knockout mice exaggerated APAP-induced liver damages. Mechanistically, Sirt6 attenuated APAP-induced hepatocyte necrosis and apoptosis through downregulation of oxidative stress, inflammation, the stress-activated kinase JNK activation, and apoptotic caspase activation. Moreover, Sirt6 negatively modulated the level and activity of poly (ADP-ribose) polymerase 1 (PARP1) in APAP-treated mouse liver tissues. Importantly, the specific Sirt6 activator MDL-800 exhibited better therapeutic potential for APAP hepatoxicity than the current drug acetylcysteine. Furthermore, in the model of bile duct ligation induced ALF, hepatic Sirt6-KO exacerbated, but Sirt6-HepTg mitigated liver damage. Collectively, our results demonstrate that Sirt6 protects against ALF and suggest that targeting Sirt6 activation could be a new therapeutic strategy to alleviate ALF.

2.
Bioorg Chem ; 147: 107364, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38636434

RESUMO

Osteoporosis is particularly prevalent among postmenopausal women and the elderly. In the present study, we investigated the effect of the novel small molecule E0924G (N-(4-methoxy-pyridine-2-yl)-5-methylfuran-2-formamide) on osteoporosis. E0924G significantly increased the protein expression levels of osteoprotegerin (OPG) and runt-related transcription factor 2 (RUNX2), and thus significantly promoted osteogenesis in MC3T3-E1 cells. E0924G also significantly decreased osteoclast differentiation and inhibited bone resorption and F-actin ring formation in receptor activator of NF-κB ligand (RANKL)-induced osteoclasts from RAW264.7 macrophages. Importantly, oral administration of E0924G in both ovariectomized (OVX) rats and SAMP6 senile mice significantly increased bone mineral density and decreased bone loss compared to OVX controls or SAMR1 mice. Further mechanistic studies showed that E0924G could bind to and then activate peroxisome proliferator-activated receptor delta (PPARδ), and the pro-osteoblast effect and the inhibition of osteoclast differentiation induced by E0924G were significantly abolished when PPARδ was knocked down or inhibited. In conclusion, these data strongly suggest that E0924G has the potential to prevent OVX-induced and age-related osteoporosis by dual regulation of bone formation and bone resorption through activation of the PPARδ signaling pathway.

3.
SLAS Discov ; 29(3): 100153, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38518956

RESUMO

Cathepsin L (CTSL), a lysosomal cysteine proteinase, is primarily dedicated to the metabolic turnover of intracellular proteins. It is involved in various physiological processes and contributes to pathological conditions such as viral infection, tumor invasion and metastasis, inflammatory status, atherosclerosis, renal disease, diabetes, bone diseases, and other ailments. The coronavirus disease 2019 (COVID-19), with its rapid global spread and significant mortality, has been a worldwide epidemic since the late 2019s. Notably, CTSL plays a role in the processing of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, providing a potential avenue to block coronavirus host cell entry and thereby inhibit SARS-CoV-2 infection in humans. In this study, we have developed a novel method using fluorescence polarization (FP) for screening CTSL inhibitors in a high-throughput format. The optimized assay demonstrated its appropriateness for high-throughput screening (HTS) with a Z-factor of 0.9 in a 96-well format. Additionally, the IC50 of the known inhibitor, Z-Phe-Tyr-CHO, was determined to be 188.50 ± 46.88 nM. Upon screening over 2000 small molecules, we identified, for the first time, the anti-CTSL properties of a benzothiazoles derivative named IMB 8015. This work presents a novel high-throughput approach and its application in discovering and evaluating CTSL inhibitors.

4.
Biomed Pharmacother ; 172: 116220, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308968

RESUMO

OBJECTIVE: Type 2 diabetes mellitus (T2DM) is a common chronic metabolic disease. Peroxisome proliferator-activated receptors (PPARs) play crucial roles in regulating glucolipid metabolism. Previous studies showed that E17241 could ameliorate atherosclerosis and lower fasting blood glucose levels in ApoE-/- mice. In this work, we investigated the role of E17241 in glycolipid metabolism in diabetic KKAy mice. APPROACH AND RESULTS: We confirmed that E17241 is a powerful pan-PPAR agonist with a potent agonistic activity on PPARγ, a high activity on PPARα, and a moderate activity on PPARδ. E17241 also significantly increased the protein expression of ATP-binding cassette transporter 1 (ABCA1), a crucial downstream target gene for PPARs. E17241 clearly lowered plasma glucose levels, improved OGTT and ITT, decreased islet cholesterol content, improved ß-cell function, and promoted insulin secretion in KKAy mice. Moreover, E17241 could significantly lower plasma total cholesterol and triglyceride levels, reduce liver lipid deposition, and improve the adipocyte hypertrophy and the inflammatory response in epididymal white adipose tissue. Further mechanistic studies indicated that E17241 boosts cholesterol efflux and insulin secretion in an ABCA1 dependent manner. RNA-seq and qRT-PCR analysis demonstrated that E17241 induced different expression of PPAR target genes in liver and adipose tissue differently from the PPARγ agonist rosiglitazone. In addition, E17241 treatment was also demonstrated to have an exhilarating cardiorenal benefits. CONCLUSIONS: Our results demonstrate that E17241 regulates glucolipid metabolism in KKAy diabetic mice while having cardiorenal benefits without inducing weight gain. It is a promising drug candidate for the treatment of T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dislipidemias , Hiperglicemia , Camundongos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , PPAR gama/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Dislipidemias/tratamento farmacológico , Fígado/metabolismo , Hiperglicemia/tratamento farmacológico , Colesterol/metabolismo , Tecido Adiposo Branco/metabolismo
5.
Eur J Med Chem ; 267: 116181, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38354519

RESUMO

A series of novel C11 substituted 14-membered 2-fluoro ketolides were synthesized and evaluated for their antibacterial activity against erythromycin-resistant and erythromycin-susceptible clinical isolates and strains from ATCC. The overall antibacterial spectra of the semi-synthetic antibiotics are similar to that of telithromycin (TEL) and most of them exhibited excellent activity against Gram-positive bacteria (S. epidermidis, S. pneumoniae, S. aureus) and several Gram-negative bacteria (M. catarrhalis, H. influenza). Compounds 11c, 11g, 11h, 11q, 12a, 12b, 12d and 12e displayed 4-16 fold more potency than TEL against all the tested erythromycin-resistant S. epidermidis strains and S. pneumonia SPN19-8 and SPN19-8. Compounds 11b, 11c, 11e, 11g, 11h, 11q, 12a, 12b and 12c showed at least 8 fold potency than TEL against erythromycin-resistant M. catarrhalis BCA19-5 and BCA19-6. Molecular docking suggested compound 12d oriented the macrolide ring and side chain similarly to solithromycin (SOL). Noticeably an additional hydrogen bond was observed between the Lys90 residue of ribosome protein L22 and the carbamate group at the C11 position, which might provide a rational explanation for the enhanced antibacterial activity of target compounds. Therefore this research would offer a new perspective for further structural optimization of the C11 side chain. Based on the results of antibacterial activity, cytotoxicity and structural diversity, 5 compounds (11a, 11b, 11h, 12d and 12i) were selected for the stability testing of human liver microsomes and compound 11a exhibited preferable metabolic stability.


Assuntos
Cetolídeos , Humanos , Staphylococcus aureus , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Macrolídeos/química , Eritromicina , Antibacterianos/química , Relação Estrutura-Atividade , Streptococcus pneumoniae
6.
J Nat Prod ; 87(2): 365-370, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38276888

RESUMO

Violaceotides B-E (1-4), four new cyclic tetrapeptides, along with seven known compounds, were identified from the sponge-associated Aspergillus insulicola IMB18-072 co-cultivated with the marine-derived Alternaria angustiovoidea IMB20-805. Their structures were elucidated by extensive analysis of spectroscopic data, including HRESIMS, 1D and 2D NMR, and MS/MS data. The absolute configurations were determined by the advanced Marfey's method. Compounds 2, 3, and violaceotide A (5) displayed selective antimicrobial activities against the aquatic pathogenic bacteria Edwardsiella tarda and E. ictaluri. In addition, compounds 1-5 showed inhibitory activities against the LPS-induced expression of the inflammatory mediator IL-6 in RAW264.7 cells at a concentration of 10 µM.


Assuntos
Anti-Infecciosos , Espectrometria de Massas em Tandem , Técnicas de Cocultura , Espectroscopia de Ressonância Magnética , Anti-Inflamatórios/farmacologia , Estrutura Molecular , Fungos , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química
7.
Biosci Biotechnol Biochem ; 88(4): 405-411, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38271604

RESUMO

Cathepsin L (CTSL) could cleave and activate SARS-CoV-2 Spike protein to promote viral entry, making it a hopeful therapeutic target for COVID-19 prevention and treatment. So CTSL inhibitors are considered to be a promising strategy to SARS-CoV-2 infection. CTSL has previously been expressed in inclusion body in Escherichia coli. In order to prepare CTSL with high purity and activity in soluble active form, we transformed HEK-293T cells with a recombinant mammalian expression plasmid. CTSL was purified to a purity about 95%, found to migrate at approximately 43 kDa and exhibited substrate specificity against Z-Phe-Arg-AMC with specific activity of no less than 85 081 U/mg, characteristic of active CTSL. Although eukaryotic purified CTSL is commercially available, our study for the first time reported the details of the expression, purification, and characterization of active, recombinant CTSL in eukaryocyte system, which laid an experimental foundation for the establishment of high-throughput screening model for anti-coronavirus drugs targeting CTSL.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Catepsina L/metabolismo , Mamíferos/metabolismo
8.
Org Lett ; 26(1): 1-5, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37988124

RESUMO

Two previous unreported epipolythiodioxopiperazines of the emestrin family, namely, noremestrin A (1) and secoemestrin E (2), were successfully isolated from the fungal source Emericella sp. 1454. Employing comprehensive spectroscopic techniques, such as high-resolution electrospray ionization mass spectrometry, infrared, and nuclear magnetic resonance (NMR), along with NMR and electronic circular dichroism calculations, the chemical structures of compounds 1 and 2 were elucidated. Particularly noteworthy is the distinctive nature of noremestrin A, representing the inaugural instance of a noremestrin variant incorporating a sulfur-bearing 15-membered macrocyclic lactone moiety. Compounds 1 and 2 exhibited weak cytotoxic activities against the human chronic myelocytic leukemia cell lines MEG-01 and K562.


Assuntos
Antineoplásicos , Emericella , Humanos , Lactonas/química , Emericella/química , Espectroscopia de Ressonância Magnética , Antineoplásicos/química , Aspergillus , Dicroísmo Circular , Estrutura Molecular
9.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069349

RESUMO

Candida albicans (C. albicans), the most common fungal pathogen, has the ability to form a biofilm, leading to enhanced virulence and antibiotic resistance. Cocultimycin A, a novel antifungal antibiotic isolated from the co-culture of two marine fungi, exhibited a potent inhibitory effect on planktonic C. albicans cells. This study aimed to evaluate the anti-biofilm activity of cocultimycin A against C. albicans and explore its underlying mechanism. Crystal violet staining showed that cocultimycin A remarkably inhibited biofilm formation in a dose-dependent manner and disrupted mature biofilms at higher concentrations. However, the metabolic activity of mature biofilms treated with lower concentrations of cocultimycin A significantly decreased when using the XTT reduction method. Cocultimycin A could inhibit yeast-to-hypha transition and mycelium formation of C. albicans colonies, which was observed through the use of a light microscope. Scanning electron microscopy revealed that biofilms treated with cocultimycin A were disrupted, yeast cells increased, and hypha cells decreased and significantly shortened. The adhesive ability of C. albicans cells treated with cocultimycin A to the medium and HOEC cells significantly decreased. Through the use of a qRT-PCR assay, the expression of multiple genes related to adhesion, hyphal formation and cell membrane changes in relation to biofilm cells treated with cocultimycin A. All these results suggested that cocultimycin A may be considered a potential novel molecule for treating and preventing biofilm-related C. albicans infections.


Assuntos
Candida albicans , Candidíase , Antifúngicos/farmacologia , Antifúngicos/química , Candidíase/microbiologia , Violeta Genciana/farmacologia , Biofilmes
11.
Curr Issues Mol Biol ; 45(6): 5052-5070, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37367070

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases. Silencing information regulator 1 (SIRT1) was demonstrated to modulate cholesterol and lipid metabolism in NAFLD. Here, a novel SIRT1 activator, E1231, was studied for its potential improvement effects on NAFLD. C57BL/6J mice were fed a high-fat and high-cholesterol diet (HFHC) for 40 weeks to create a NAFLD mouse model, and E1231 was administered by oral gavage (50 mg/kg body weight, once/day) for 4 weeks. Liver-related plasma biochemistry parameter tests, Oil Red O staining, and hematoxylin-eosin staining results showed that E1231 treatment ameliorated plasma dyslipidemia, plasma marker levels of liver damage (alanine aminotransferase (ALT) and aspartate aminotransferase (AST)), liver total cholesterol (TC) and triglycerides (TG) contents, and obviously decreased hepatic steatosis score and NAFLD Activity Score (NAS) in the NAFLD mouse model. Western blot results showed that E1231 treatment significantly regulated lipid-metabolism-related protein expression. In particular, E1231 treatment increased SIRT1, PGC-1α, and p-AMPKα protein expression but decreased ACC and SCD-1 protein expression. Additionally, in vitro studies demonstrated that E1231 inhibited lipid accumulation and improved mitochondrial function in free-fatty-acid-challenged hepatocytes, and required SIRT1 activation. In conclusion, this study illustrated that the SIRT1 activator E1231 alleviated HFHC-induced NAFLD development and improved liver injury by regulating the SIRT1-AMPKα pathway, and might be a promising candidate compound for NAFLD treatment.

12.
Nat Prod Res ; : 1-7, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154381

RESUMO

Five isocoumarin derivatives including three new compounds, aspermarolides A-C (1-3), and two known analogues, 8-methoxyldiaporthin (4) and diaporthin (5) were obtained from the culture extract of Aspergillus flavus CPCC 400810. The structures of these compounds were elucidated by spectroscopic methods. The double bond geometry of 1 and 2 were assigned by the coupling constants. The absolute configuration of 3 was determined by electronic circular dichroism experiment. All compounds showed no cytotoxic activities against the two human cancer cells HepG2 and Hela.

13.
Acta Pharm Sin B ; 13(5): 2056-2070, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250168

RESUMO

Tuberculosis (TB) is one of the deadly diseases caused by Mycobacterium tuberculosis (Mtb), which presents a significant public health challenge. Treatment of TB relies on the combination of several anti-TB drugs to create shorter and safer regimens. Therefore, new anti-TB agents working by different mechanisms are urgently needed. FtsZ, a tubulin-like protein with GTPase activity, forms a dynamic Z-ring in cell division. Most of FtsZ inhibitors are designed to inhibit GTPase activity. In Mtb, the function of Z-ring is modulated by SepF, a FtsZ binding protein. The FtsZ/SepF interaction is essential for FtsZ bundling and localization at the site of division. Here, we established a yeast two-hybrid based screening system to identify inhibitors of FtsZ/SepF interaction in M. tuberculosis. Using this system, we found compound T0349 showing strong anti-Mtb activity but with low toxicity to other bacteria strains and mice. Moreover, we have demonstrated that T0349 binds specifically to SepF to block FtsZ/SepF interaction by GST pull-down, fluorescence polarization (FP), surface plasmon resonance (SPR) and CRISPRi knockdown assays. Furthermore, T0349 can inhibit bacterial cell division by inducing filamentation and abnormal septum. Our data demonstrated that FtsZ/SepF interaction is a promising anti-TB drug target for identifying agents with novel mechanisms.

14.
Antiviral Res ; 214: 105606, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37076089

RESUMO

The emergence of SARS-CoV-2 variants represents a major threat to public health and requires identification of novel therapeutic agents to address the unmet medical needs. Small molecules impeding viral entry through inhibition of spike protein priming proteases could have potent antiviral effects against SARS-CoV-2 infection. Omicsynin B4, a pseudo-tetrapeptides identified from Streptomyces sp. 1647, has potent antiviral activity against influenza A viruses in our previous study. Here, we found omicsynin B4 exhibited broad-spectrum anti-coronavirus activity against HCoV-229E, HCoV-OC43 and SARS-CoV-2 prototype and its variants in multiple cell lines. Further investigations revealed omicsynin B4 blocked the viral entry and might be related to the inhibition of host proteases. SARS-CoV-2 spike protein mediated pseudovirus assay supported the inhibitory activity on viral entry of omicsynin B4 with a more potent inhibition of Omicron variant, especially when overexpression of human TMPRSS2. Moreover, omicsynin B4 exhibited superior inhibitory activity in the sub-nanomolar range against CTSL, and a sub-micromolar inhibition against TMPRSS2 in biochemical assays. The molecular docking analysis confirmed that omicsynin B4 fits well in the substrate binding sites and forms a covalent bond to Cys25 and Ser441 in CTSL and TMPRSS2, respectively. In conclusion, we found that omicsynin B4 may serve as a natural protease inhibitor for CTSL and TMPRSS2, blocking various coronavirus S protein-driven entry into cells. These results further highlight the potential of omicsynin B4 as an attractive candidate for broad-spectrum antiviral therapy that could rapidly respond to emerging variants of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Catepsina L/metabolismo , Peptídeo Hidrolases , Simulação de Acoplamento Molecular , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Antivirais/farmacologia , Serina Endopeptidases/farmacologia
15.
Front Pharmacol ; 14: 1073037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37050909

RESUMO

Background: Pin1 is a member of the evolutionarily conserved peptidyl-prolyl isomerase (PPIase) family of proteins. Following phosphorylation, Pin1-catalyzed prolyl-isomerization induces conformational changes, which serve to regulate the function of many phosphorylated proteins that play important roles during oncogenesis. Thus, the inhibition of Pin1 provides a unique means of disrupting oncogenic pathways and therefore represents an appealing target for novel anticancer therapies. Methods: As Pin1 is conserved between yeast and humans, we employed budding yeast to establish a high-throughput screening method for the primary screening of Pin1 inhibitors. This effort culminated in the identification of the compounds HWH8-33 and HWH8-36. Multifaceted approaches were taken to determine the inhibition profiles of these compounds against Pin1 activity in vitro and in vivo, including an isomerization assay, surface plasmon resonance (SPR) technology, virtual docking, MTT proliferation assay, western blotting, cell cycle analysis, apoptosis analysis, immunofluorescence analysis, wound healing, migration assay, and nude mouse assay. Results: In vitro, HWH8-33 and HWH8-36 could bind to purified Pin1 and inhibited its enzyme activity; showed inhibitory effects on cancer cell proliferation; led to G2/M phase arrest, dysregulated downstream protein expression, and apoptosis; and suppressed cancer cell migration. In vivo, HWH8-33 suppressed tumor growth in the xenograft mice after oral administration for 4 weeks, with no noticeable toxicity. Together, these results show the anticancer activity of HWH8-33 and HWH8-36 against Pin1 for the first time. Conclusion: In summary, we identified two hit compounds HWH8-33 and HWH8-36, which after further structure optimization have the potential to be developed as antitumor drugs.

16.
Biomedicines ; 11(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979626

RESUMO

Mitochondria are the center of energy metabolism in eukaryotic cells and play a central role in the metabolism of living organisms. Mitochondrial diseases characterized by defects in oxidative phosphorylation are the most common congenital diseases. Meanwhile, mitochondrial dysfunction caused by secondary factors such as non-inherited genetic mutations can affect normal physiological functions of human cells, induce apoptosis, and lead to the development of various diseases. This paper reviewed several major factors and mechanisms that contribute to mitochondrial dysfunction and discussed the development of diseases closely related to mitochondrial dysfunction and drug treatment strategies discovered in recent years.

17.
J Evid Based Med ; 16(1): 50-67, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36852502

RESUMO

BACKGROUND: We have updated the guideline for preventing and managing perioperative infection in China, given the global issues with antimicrobial resistance and the need to optimize antimicrobial usage and improve hospital infection control levels. METHODS: We conducted a comprehensive evaluation of the evidence for prevention and management of perioperative infection, based on the concepts of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. The strength of recommendations was graded and voted using the Delphi method and the nominal group technique. Revisions were made to the guidelines in response to feedback from the experts. RESULTS: There were 17 questions prepared, for which 37 recommendations were made. According to the GRADE system, we evaluated the body of evidence for each clinical question. Based on the meta-analysis results, recommendations were graded using the Delphi method to generate useful information. CONCLUSIONS: This guideline provides evidence to perioperative antimicrobial prophylaxis that increased the rational use of prophylactic antimicrobial use, with substantial improvement in the risk-benefit trade-off.


Assuntos
Antibioticoprofilaxia , Infecções , Assistência Perioperatória , China , Infecções/tratamento farmacológico , Controle de Infecções , Hospitais , Técnica Delfos
18.
J Nat Prod ; 86(3): 604-611, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693727

RESUMO

Altersteroids A-D (1-4), four new 9,11-secosteroid-derived γ-lactones, were isolated from cultures of the ascomycete fungus Alternaria sp. Their structures were elucidated primarily by NMR experiments. The absolute configuration of 1 was established by X-ray crystallographic analysis of its di-p-nitrobenzenesulfonate 1a using Cu Kα radiation, whereas those for 2-4 were assigned by quantum-chemical calculations. Compounds 1-4 incorporate a γ-lactone moiety fused to the steroid D ring at C-13/C-14. Compound 3 showed moderate cytotoxicity toward four tumor cell lines and induced an apoptotic process in A549 cells. Notably, compound 3 showed equipotent activity against the cisplatin-sensitive MB49 and -resistant MB49 CisR cells, with an IC50 value of 12.7 µM.


Assuntos
Ascomicetos , Secoesteroides , Alternaria/química , Lactonas/química , Estrutura Molecular , Ascomicetos/química , Linhagem Celular Tumoral
19.
J Asian Nat Prod Res ; 25(8): 796-802, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36272140

RESUMO

In this paper, we present the discovery of a novel salicylic acid derivative, moldavica acid A (1), and a new natural dibenzo[b,f]oxepin, moldavica acid B (2), together with four known phenylpropionic acids (3-6) and protocatechuic acid (7) that were isolated from Dracocephalum moldavica L. Their structures were elucidated by comprehensive spectroscopic methods, including infrared and nuclear magnetic resonance. Compound 1 is the first example of salicylic acid linking a carboxylated α-pyrone via an ethyl bridge. Beyond expanding the knowledge of the chemical diversity of D. moldavica, both compounds 1 and 2 were shown to upregulate the expression of Kruppel-like factor 2, which could serve as a prospective therapeutic target for the treatment of atherosclerosis.

20.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362263

RESUMO

Krüppel-like factor 2 (KLF2) is an atherosclerotic protective transcription factor that maintains endothelial cell homeostasis through its anti-inflammatory, anti-oxidant, and antithrombotic properties. The aim of this study was to discover KLF2 activators from microbial secondary metabolites and explore their potential molecular mechanisms. By using a high-throughput screening model based on a KLF2 promoter luciferase reporter assay, column chromatography, electrospray ionization mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR) spectra, trichostatin D (TSD) was isolated from the rice fermentation of Streptomyces sp. CPCC203909 and identified as a novel KLF2 activator. Real-time-quantitative polymerase chain reaction (RT-qPCR) results showed that TSD upregulated the mRNA level of KLF2 in endothelial cells. Functional assays showed that TSD attenuated monocyte adhesion to endothelial cells, decreased vascular cell adhesion protein 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) expression, and exhibited an anti-inflammatory effect in tumor necrosis factor alpha (TNFα)-induced endothelial cells. We further demonstrated through siRNA and western blot assays that the effects of TSD on monocyte adhesion and inflammation in endothelial cells were partly dependent on upregulating KLF2 expression and then inhibiting the NOD-like receptor protein 3 (NLRP3)/Caspase-1/interleukin-1beta (IL-1ß) signaling pathway. Furthermore, histone deacetylase (HDAC) overexpression and molecular docking analysis results showed that TSD upregulated KLF2 expression by inhibiting HDAC 4, 5, and 7 activities. Taken together, TSD was isolated from the fermentation of Streptomyces sp. CPCC203909 and first reported as a potential activator of KLF2 in this study. Furthermore, TSD upregulated KLF2 expression by inhibiting HDAC 4, 5, and 7 and attenuated endothelial inflammation via regulation of the KLF2/NLRP3/Caspase-1/IL-1ß signaling pathway.


Assuntos
Células Endoteliais , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Células Endoteliais/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Simulação de Acoplamento Molecular , Inflamação/patologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Caspases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...